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ABSTRACT

Measurements of soluble components, and characterization of the charge on the
mineral surfaces, are reported for five samples of the Champlain Sea sediments:
Large amounts of magnesium, beyond the amount of dolomite present, were
slowly released in solution from the broken surfaces of the minerals. Amorphous
aluminosilicates made up less than 6% of the sample weight, and their removal
did not improve the X-ray diffraction patterns or alter significantly the chemical
properties of the sediments. Of the cation exchange capacity of 20 to 30 meq/100 g
at pH 7, from 50 to 759 was found to be due to pH-dependent charge, which
leads to preferential adsorption of monovalent ions. In equilibrium with artificial
seawater, the samples had from 50 to 25% exchangeable sodium.

INTRODUCTION

The Champlain Sea sediments were deposited in an inland sea in late glacial
times about 10000 years ago (Karrow 1961). They are the parent materials
for the productive soils of the St. Lawrence Lowlands, and form the subsoils
for roads and engineering structures in urban areas and along rivers.

Brydon and Patry (1961) and Karrow (1961) considered the main source of
the deposits to be igneous and metamorphic rocks of the Canadian Shield.
The sediments are composed of ground-up primary minerals; mica and chlorite
predominate, with smaller amounts of amphibole, quartz, and feldspar. The
clay fraction usually contains small amounts of montmorillonite or inter-
stratified illite—montmorillonite (Karrow 1961; Brydon and Patry 1961; Allen
and Johns 1960).

The sediments were deposited in brackish water having a variable salt
concentration, and the particles in this flocculated suspension settled out with
a random particle arrangement, having a high porosity and consequently a
high water content. When the sediment is disturbed, the random particle
arrangement collapses because there is little interparticle bonding. The porosity
then tends to decrease, the excess water becomes free, and the strength is
greatly reduced. This sensitivity, and the large shrinkage on drying, cause
problems in using the soils as foundation. While these unusual physical
properties have stimulated many geotechnical studies, only limited information
is available on geochemical properties. The primary minerals would be expected
to have chemical properties, especially cation exchange characteristics, which
would be different from those of other soils.

This paper presents measurements of soluble and amorphous mineral com-
ponents and cation exchange characteristics of the Champlain Sea sediments.

EXPERIMENTAL

Five samples of the Champlain Sea sediments in the Ottawa Valley were
chosen to provide a range in depth (Table I). In all samples, the air-dry soil
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of less than 2 mm particle size was used unless otherwise specified. Particle
size was analyzed by the pipette method, dispersion with ““Calgon’’, and stirring.
Organic matter was measured by dichromate oxidation (Jackson 1958), the pH
in 0.01 M CaCl;: by the method of Schofield and Taylor (1955), and carbonates
by the manometric procedure of Skinner et al. (1959). Incomplete analyses are
reported for 61-62 because of an insufficient quantity of sample.

Soluble cations, exchangeable cations, and cation-exchange capacity of the
soil were determined by the method of Yaalon et al. (1962). Calcium and
magnesium were determined by complexometric titration with ethylene-
diamine tetraacetic acid (EDTA); calcium with calcein as the indicator (Van
Schouwenburg 1961), and magnesium after separation of calcium with sodium
tungstate, and using ammonium molybdate to suppress a possible phosphate
interference (Middleton 1961). Lithium was determined at 673 mu using a
Beckman Model DU flame spectrophotometer. Chloride was determined by
Hg(NO;)—diphenylcarbazone complexometric titration (Clarke 1950). Xylene
cyanole FF was added to the diphenylcarbazone — bromophenol blue mixed
indicator.

Calcium and magnesium soluble in 0.1 N HCl and in 1 N NH,OAc were
determined as follows. A 0.500 g air-dry sample was placed in a 50 ml centrifuge
tube with 40 cc of one solution and shaken for 1 hour. After the solution was
centrifuged, the supernatant was removed. A further 40 cc of solution was
added to the soil cake and shaken, and after 24 hours the supernatant was
again removed. This operation was repeated for 11 more periods up to 1 632 h
for HCI, and for 8 periods up to 1 152 h for NH,OAc. The supernatant from the
HC extraction was treated with sodium diethyldithiocarbamate and isoamyl
alcohol to remove interfering ions (Cheng ef al. 1953), and Ca and Mg deter-
mined by complexometric titration with EDTA, using Eriochrome black T and
Cal-red indicators (Patton and Reeder 1956).

Amorphous silica, alumina, and iron contents of the oven-dry, <2y, clay
fractions were determined by the method of Hashimoto and Jackson (1960).
X-Ray diffraction patterns were obtained for oriented films of clay dried onto
glass slides. Total surface area was determined by the equilibrium ethylene
glycol method of Bower and Goertzen (1959). Cation-exchange capacities of
the <2 ufraction were determined by the micromethod of Mackenzie (1951).

The amount of permanent charge due to isomorphous substitution was taken
as the milliequivalents of hydrogen present in a clay saturated with hydrogen.
This was based on the assumption that only permanent charge (Schofield 1949)
would be present at this low pH, below pH 4, and that this permanent charge
would be balanced entirely by H ions. The clay was saturated with H by batch
exchange with IR-120 exchange resin, and used immediately to prevent
accumulation of aluminium and magnesium. Water and NaCl were added to
give a 0.5%, H-clay suspension in 0.5 N NaCl. It was assumed that the Na
replaced all the H, and that the measured pH of this suspension gave the
concentration of H present. This was calculated as meq of H/100 g soil. No
correction from activity to concentration was attempted. This procedure was
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checked with three bentonite samples. The measured permanent charge varied
from 76 to 899, of the total charge at pH 7. This agrees with the value of around
809, commonly assumed for bentonites.

The samples used for studies of cation equilibrium in artificial seawater were
treated with 0.1 N HCI to remove carbonates, then neutralized with NaOH,
and washed with NaCl. The excess salt was removed by ultrafiltration. The
artificial seawater was made up from the formula of Whitehouse and McCarter
(1958), using only those salts present in concentrations exceeding 30 mg/1.
Technical grade NaCl was used. This contained about 19, KCl, which made
the K concentration in the seawater too high.

A 4 g sample of soil and 33 cc of artificial seawater were shaken overnight
and centrifuged, and the supernatant removed by decantation. Four more
aliquots of seawater were added and shaken for 15 minutes and centrifuged,
and the supernatant removed. The solution decanted after the last centri-
fuging was analyzed as a check on the cation concentration in the seawater.
The weight of seawater occluded in the soil cake was calculated from the known
weights of oven-dry soil and centrifuge tube.

The soil cake with occluded seawater was washed three times with NH,OAc
by the centrifuge procedure, and the amounts of Ca, Mg, K, and Na in the
washings were determined after destruction of the acetate. From the concen-
trations of these cations in seawater, and the calculated volume of the occluded
seawater, the amounts of these ions in the NH,OAc extracts attributable to
seawater were known. The differences were the amounts of exchangeable Na,
K, Ca, and Mg held by the soil.

DISCUSSION OF RESULTS

Soluble Components

Preliminary experiments had indicated that it was impossible to prepare
homoionic clay, that is, a sample with only one species of exchangeable cation,
because magnesium and, to a lesser extent calcium, became soluble in the
extracting solutions and gradually replaced other cations. The nature of this
cation release from the sediments was, therefore, studied first.

The calcite and dolomite contents of the samples agree with the more
extensive analyses by Brydon and Patry (1961). The total carbonate and the
proportion of dolomite to calcite increase with depth (Table I). Samples 62-2
and 61-61 were separated into different size-fractions by sedimentation and
decantation, and total carbonate of some of the fractions was determined.
The clay fraction contains about 19, CO, while the sand and silt fractions
contain from 4 to 8%, CO, (Table II). The larger proportion of the carbonate
in the soil is in the sand and silt fractions, even where these fractions are a
smaller part of the total sample.

Removal of carbonates by treatment for 2 h with acid did not remove all
of the soluble cations. Samples extracted for longer periods in ammonium
acetate and HCI continued to release magnesium (Table III). Most of the
calcium released is accounted for by the calcite and dolomite present, but large
additional amounts of magnesium are released in both extracting solutions.
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TABLE 11

Distribution of carbonate in size fractions

Calcium and magnesium released

|
Carbonate, % of tota
Sample Fraction % CO2 carbonate
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of magnesium remaining vs. time. After the initial rapid release, which can be
attributed to dissolution of dolomite, the logarithm of the amount of magnesium
remaining vs. time is a straight line. This result, characteristic of a first-order
reaction, can be interpreted as meaning that the magnesium is coming from one
source. This interpretation is also indicated by the observation that the slopes
of the two lines are approximately the same, even though different amounts of
magnesium are released. The release of calcium, plotted on the same scale,
shows that there is no comparable component which releases calcium slowly.
The rapid solution of calcite is shown by the almost vertical line.

The magnesium probably comes from the surfaces of magnesium-bearing
minerals such as amphibole and chlorite. It has been shown frequently that
ions are released from the surfaces of minerals freshly ground in the laboratory.
These sediments, which were ground by the ice and deposited in water with little
subsequent weathering, would be expected to show a similar release of cations.
This release accounts for the persistence of a large proportion of exchangeable
magnesium, even in surface soils from which all of the carbonates have been

leached.

Amorphous Material
These sediments exhibit properties which could be due to the presence of

significant amounts of amorphous aluminosilicates. The X-ray diffraction
pattern from oriented films of clay-size particles is weak. Samples in suspension
show partial flocculation at intermediate salt concentrations, and in sodium
silicate solution. Part of the material is flocculated and part remains in sus-
pension. The same minerals were found in each fraction, but the peaks of the
X-ray diffraction patterns of the suspended fraction were weaker. This could
result from lesser crystallinity or smaller size of the suspended material.
Samples at a water content in the plastic range also show a marked increase in
stiffness on addition of NaOH, which could result from reaction of the hydroxide
with free silicate.

The clay fraction of the samples examined contained only small amounts of
amorphous aluminosilicates soluble in boiling NaOH (Table IV). The molar

TABLE 1V

Amorphous material dissolved from the clay fraction by rapid NaOH boiling and free-iron
removal treatments

Materials removed, % Molar ratios

Sample SlOz Alea F6203 SlOz/A1203 SlOz/RzO:
61-60 4.3 1.59 2.50 4.51 2.29
62-1 4.27 1.49 2.39 4.76 2.36
62-2 3.32 1.24 1.39 4.55 2.68
61-61 3.48 1.21 1.34 4.88 2.85

ratios of Si0,/Al,0; are fairly constant and within the range of the molar ratios
of 4.1 to 5.4 for the total soil reported by Talvenheimo (1948), Schalin (1951),

it
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and Burn* for samples of the Champlain Sea sedim.ents. The tf)‘Fal compo.sm'on
of the samples used in this study was not determined. The sdxca—sesquxpmdi
(Si02/R:0») ratios increase slightly with depth and are lower th.an' the ratlost }(1)
2.9 to 4.0 found for the whole soil (see reference§ above). This is due t?f e
larger proportion of iron in th; amorphous material. A larger amount of free
i is expected.

lrolg:rfgizg;Z?i;fgc:r:orpious material had little effect on the X-ray diffraction
patterns. The peak intensity was enhanced slightly in some sgmples, pro}llJably
as a result of more parallel orientation of .partlcl.es on the slide. The ex; angg
capacity and surface area were decreased slightly in two samples and unc a;ge
in the other two. It appears that the component dissolved ou't as amo;p quﬁ
material is poorly crystalline material of the same corr}posmon, alr{l Xw1t
approximately the same properties, as the rest of the '5011. The weah -}:ay
diffraction patterns are due to small crysta! size and pos.s1b1y shape, rather than
to the presence of amorphous material coating a crystalline component.

ization of Charge ‘
Ch%?lidzgtffézo’:)ffthe flectrical charge on soil particles, .whether from xscl)—
morphous substitution or broken bonds, inﬂu-en.c.es th? ratxqs .of .exchal.lg}fable
cations. The Champlain Sea sediments were initially in equlllbru.lm wit Ta c‘lc
or brackish water. Subsequent deposition of calcrf\reous materials supp 1ef
calcium, which exchanged for some of the other cations. An understandmgbcl)
the geochemistry of the sediments requires a knowledge of the exchangeable
i t. .
Ca'fll‘(l)lrésgce;;ggeable cations of the sediments in th_e natural state arehfi(;ml-
nantly calcium and magnesium, with the proportion of magnesium Ilg e:lt
for the surface samples (Table V). This resu.lts from magnesium being re e:}tse ,
as discussed above, after the carbonates Wthl‘{ supply calcium are leached. rom
the upper layers. The total exchange capacity of the <2 claylfractlarll is
33 meq/100 g for the two surface samples, and about 20.for.the ol’vlv.erl'1 hree
samples. These values cover the range of about 20 determinations w ic. ;Ve
been made on clay fractions from soils developed on the Champlain Sea
Sec’iI{?eerIl{t-séaturated clay fractions in 0.5 N NaCl had pH values of abou;c1 3.5.
This hydrogen ion concentration was considered a measure of permanent cf arg(z
that was due to isomorphous substitution, and the cation exchange capachlty a
pH 7 as total charge. The difference between the two is pH-dependent c a;g?.
On this basis, from one-half to three-quarters of the total charge at- th ! is
pH dependent (Table V). These values fs)r pH-dependen.t charge are hig “;1 en
compared with values reported in the literature f?r soils. But, becaﬁlse 1: ese
sediments contain only small amounts of clay mmera_ls, most of t ec varii
must be associated with broken surfaces of primary minerals, and this wou

be expected to be pH dependent.

*Personal communication, K. N. Burn, Division of Building Research, National Research
Council, Ottawa.
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TABLE V
Cation exchange capacity and exchangeable cations

Measured
permanent

Soluble
cations, meq/100 g

C.E.C.

Cation
exchange

Exchangeable
cations, meq/100 g

Surface

of clay

fraction,
(meq/100 g)

% pH
depgndent

charge for

area,
charge mi/fg

ay fraction,
(meq/100 g)

cl

capacity,
(meq /100 g)

Mg

Mg

Ca

Sample

[=l=T=X f=)
e O
i BV A
O | O
LRI IB
o
WX D
Z
RN
DAY

61-60
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61-62
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The higher exchange capacity and higher proportion of pH-dependent charge
in the surface samples probably results from the distribution of particle sizes.
There is a larger proportion of <0.2 x material in the clay fraction in the surface
samples. These smaller particles would have a higher proportion of surface
area in broken surfaces, and hence, a higher exchange capacity. The measure-
ments of total surface area by glycol retention (Table V) bear out this ex-

130

oo
=

64
50

planation.
The charge on soil particles can be characterized by the relative adsorption

of different cations. A preliminary study was made of the cation ratios for these
sediments by measuring the proportion of different cations in equilibrium with

seawater.
TABLE VI
Exchangeable cations in equilibrium with seawater and calculated Gapon exchange constants

Exchangeable cations (amount
Sum of exchangeable expressed as %, of exchange capacity) Gapon exchange

Ca, Mg, Na, and K, constant
Sample meq/100 g Na K Ca Mg (liter/mole)?

30 1.01
1.00
36 0.78
40 0.48

42
19
18

61-60 19.5 50 18
62-1 18.3 45 23
62-2 13.5 40 23
61-61 4.5 26 24

DOOWON
[
(=

R The proportion of exchangeable cations in equilibrium with seawater (Table
e VI) is summarized in the Gapon exchange constant (e.g. Bolt 1955) calculated

from the equation:

(Na + K)e/(Ca + Mg). = G(Na + K)o/+v/(Ca + Mg)o

; ;2 where (). are the amounts of exchangeable Na, K, Ca, and Mg, expressed as
meq/100 g, and ( )o are the amounts in the artificial seawater expressed in
moles/liter. The exchange constant, G, then has the units of (liter/mole)?.
The exchangeable cations are dominantly sodium and magnesium, with
appreciable amounts of potassium. The potassium is higher than would be
obtained in natural seawater because the NaCl used contained potassium.
. With decreasing charge and decreasing proportion of pH-dependent charge,
; < the proportion of magnesium to sodium increases and the Gapon exchange
constant decreases from 1 to 0.5. Exchange sites due to permanent charge
have a higher bonding energy and divalent ions are preferentially adsorbed at
gw these sites (Marshall 1954).
Z~ ' The value of the exchange constant, G, for ratios of sodium to calcium on
illite (Bolt 1955) and montmorillonite (Bower 1959) is about 0.4. To make the
exchange constants in seawater more closely comparable with sodium—calcium
exchange, they can be recalculated to exclude potassium. The G values then
range from 0.8 to 0.3. The samples with highest pH-dependent charge still
adsorb relatively more sodium ions, but the other samples have exchange
constants comparable with those of the minerals illite and montmorillonite.

1o~
A

61-62
61-61
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If the cations in equilibrium with seawater are taken as the original exchange-
able cations, leaching out of the free salt has been accompanied by a net loss
of sodium replaced largely by calcium ions.
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